Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Am J Infect Control ; 2023 Jun 02.
Article in English | MEDLINE | ID: covidwho-20230864

ABSTRACT

BACKGROUND: Contaminated laundry contributes to infectious disease spread in residential and home health care settings. The objectives were to (1) evaluate pathogen transmission risks for individuals doing laundry, and (2) compare hand hygiene timing to reduce risks. METHODS: A quantitative microbial risk assessment using experimental data from a laundry washing effectiveness study was applied to estimate infection risks from SARS-CoV-2, rotavirus, norovirus, nontyphoidal Salmonella, and Escherichia coli in 4 laundry scenarios: 1 baseline scenario (no hand hygiene event) and 3 hand hygiene scenarios (scenario 1: after moving dirty clothes to the washing machine, scenario 2: after moving washed clothes to the dryer, and scenario 3: hand hygiene events following scenario 1 and 2). RESULTS: The average infection risks for the baseline scenario were all greater than 2 common risk thresholds (1.0×10-6and 1.0×10-4). For all organisms, scenario 1 yielded greater risk reductions (39.95%-99.86%) than scenario 2 (1.35%-55.25%). Scenario 3 further reduced risk, achieving 1.0×10-6(SARS-CoV-2) and 1.0×10-4risk thresholds (norovirus and E. coli). CONCLUSIONS: The modeled results suggest individuals should reduce hand-to-facial orifice (eyes, nose, and mouth) contacts and conduct proper hand hygiene when handling contaminated garments. More empirical data are needed to confirm the estimated risks. DATA AVAILABILITY STATEMENT: The data and code that support the findings of this study can be retrieved via a Creative Commons Zero v1.0 Universal license in GitHub at https://github.com/yhjung1231/Laundry-QMRAproject-2022.git DOI: http://doi.org/10.5281/zenodo.7122065.

2.
Infect Control Hosp Epidemiol ; : 1-3, 2021 Dec 02.
Article in English | MEDLINE | ID: covidwho-2279062

ABSTRACT

The surface environment in rooms of coronavirus disease 2019 (COVID-19) patients may be persistently contaminated despite disinfection. A continuously active disinfectant demonstrated excellent sustained antiviral activity following a 48-hour period of wear and abrasion exposures with reinoculations. Reductions of >4-log10 were achieved within a 1-minute contact time for severe acute respiratory coronavirus virus 2 (SARS-CoV-2) and the human coronavirus, 229E.

3.
Infect Control Hosp Epidemiol ; : 1-3, 2021 Oct 06.
Article in English | MEDLINE | ID: covidwho-2260416

ABSTRACT

Respiratory viruses can be transmitted by fomite contact, but no data currently exist on the transfer of enveloped viruses. The transfer efficiency of human coronavirus from various hard surfaces ranged from 0.46% to 49.0%. This information can be used to model the fomite transmission of enveloped viruses.

4.
Sci Total Environ ; 882: 163049, 2023 Jul 15.
Article in English | MEDLINE | ID: covidwho-2281083

ABSTRACT

The ongoing pandemic of Coronavirus disease 2019 (COVID-19) has affected >600 million people with >6 million deaths. Although Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), the etiologic agent of COVID-19, is transmitted via respiratory droplets or direct contact, isolation of viable SARS-CoV-2 in feces has been reported. Therefore, there is a need for understanding the persistence of SARS-CoV-2 and emerging variants in wastewater. In this study, the survival of SARS-CoV-2 isolate hCoV-19/USA-WA1/2020 was observed in three wastewater matrices - filtered and unfiltered raw wastewater, and secondary effluent. All experiments were conducted within a BSL-3 laboratory at room temperature. The time required for inactivation of 90 % (T90) of SARS-CoV-2 was 10.4, 10.8, and 18.3 h for unfiltered raw, filtered raw, and secondary effluent, respectively. Progressive decline in infectivity of the virus following first order kinetics was noted in these wastewater matrices. To the best of our knowledge, this is the first study to describe the survival of SARS-CoV-2 in secondary effluent.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Wastewater , Pandemics , Feces
5.
Photochem Photobiol ; 2022 Sep 21.
Article in English | MEDLINE | ID: covidwho-2038178

ABSTRACT

Germicidal ultraviolet (UV) devices have been widely used for pathogen disinfection in water, air, and on food and surfaces. Emerging UV technologies, like the krypton chloride (KrCl*) excimer emitting at 222 nm, are rapidly gaining popularity due to their minimal adverse effects on skin and eyes compared with conventional UV lamps emitting at 254 nm, opening opportunities for UV disinfection in occupied public spaces. In this study, inactivation of seven bacteria and five viruses, including waterborne, foodborne and respiratory pathogens, was determined in a thin-film aqueous solution using a filtered KrCl* excimer emitting primarily at 222 nm. Our results show that the KrCl* excimer can effectively inactivate all tested bacteria and viruses, with most microorganisms achieving more than 4-log (99.99%) reduction with a UV dose of 10 mJ cm-2 . Compared with conventional UV lamps, the KrCl* excimer lamp exhibited better disinfection performance for viruses but was slightly less effective for bacteria. The relationships between UV sensitivities at 222 and 254 nm for bacteria and viruses were evaluated using regression analysis, resulting in factors that could be used to estimate the KrCl* excimer disinfection performance from well-documented UV kinetics using conventional 254 nm UV lamps. This study provides fundamental information for pathogen disinfection when employing KrCl* excimers.

6.
Int J Environ Health Res ; : 1-13, 2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-1984767

ABSTRACT

Propolis is a resinous substance collected by bees (Apis mellifera). It is used for its biological properties. This natural product is available as a safe therapeutic option. Herein, we report the antiviral effects of brown propolis extract from Mexico and green and red propolis extracts from Brazil, as well as their phenolic compounds (quercetin, caffeic acid, and rutin) in preventing infection of MRC-5 cells by HCoV-229E. Normal human fibroblast lung cells (MRC-5) were used to determine the cytotoxicity of the compounds. All samples studied showed antiviral activity. Green and brown propolis extracts, and quercetin exhibited the best EC50 values with values of 19.080, 11.240, and 77.208 µg/mL against HCoV-229E, respectively, and with TC50 of 62.19, 29.192, and 298 µg/mL on MRC-5 cells, respectively. These results are the first in vitro study of the effects of propolis on HCoV-229E and provide the basis for the development of natural formulations against other coronavirus strains.

7.
American Journal of Infection Control ; 50(7):S16-S16, 2022.
Article in English | CINAHL | ID: covidwho-1906670

ABSTRACT

Fomites are an important pathway for infectious disease spread in residential and home healthcare settings (i.e., nursing, assisted living, and retirement communities). Many healthcare professionals launder work clothes at home that may be contaminated by contact with infected patients. Through quantitative microbial risk assessment (QMRA), the study objectives were to (1) evaluate pathogen transmission risks for those doing laundry, and (2) compare infection control interventions to reduce laundering risks. A simulation model was used to evaluate exposure events related to laundry process. One baseline scenario (no handwashing) and three handwashing scenarios (scenario 1: after moving dirty clothes to washing machine, scenario 2: after moving wet clothes to dryer, scenario 3: after both of these previous steps) were evaluated. Each scenario involved a single user, three contacts with contaminated laundry, and three contacts with the face. Five representative microorganisms known to spread via intra-familial transmission were modeled: SARS-CoV-2, rotavirus, norovirus, nontyphoidal Salmonella, and Escherichia coli. The mean infection risks for the baseline scenario were all above a 1 in 1,000,000 risk threshold: 7.22 × 10

8.
Sci Rep ; 12(1): 5247, 2022 03 28.
Article in English | MEDLINE | ID: covidwho-1764199

ABSTRACT

The clothes laundering process affords numerous opportunities for dissemination of infectious virus from contaminated clothing to appliance surfaces and other household surfaces and eventually to launderer's hands. We have explored the efficacy of laundry sanitizers for inactivating coronaviruses and influenza viruses. Virucidal efficacy was tested using standardized suspension inactivation methods (EN 14476) or hard-surface inactivation methods (ASTM E1053-20) against SARS-CoV-2, human coronavirus 229E (HCoV 229E), influenza A virus (2009-H1N1 A/Mexico), or influenza B virus (B/Hong Kong). Efficacy was measured in terms of log10 reduction in infectious virus titer, after 15 min contact time (suspension studies) or 5 min contact time (hard surface studies) at 20 ± 1 °C. In liquid suspension studies, laundry sanitizers containing p-chloro-m-xylenol (PCMX) or quaternary ammonium compounds (QAC) caused complete inactivation (≥ 4 log10) of HCoV 229E and SARS-CoV-2 within 15 min contact time at 20 ± 1 °C. In hard surface studies, complete inactivation (≥ 4 log10) of each coronavirus or influenza virus, including SARS-CoV-2, was observed following a 5-min contact time at 20 ± 1 °C. Respiratory viruses may remain infectious on clothing/fabrics and environmental surfaces for hours to days. The use of a laundry sanitizer containing microbicidal actives may afford mitigation of the risk of contamination of surfaces during handling of the laundry and washing appliances (i.e., washer/dryer or basin), adjacent surfaces, the waste water stream, and the hands of individuals handling clothes contaminated with SARS-CoV-2, influenza viruses, or other emerging enveloped viruses.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Influenza A Virus, H1N1 Subtype , Influenza A virus , COVID-19/prevention & control , Humans , SARS-CoV-2
9.
Appl Environ Microbiol ; 87(22): e0153221, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1494943

ABSTRACT

Effective disinfection technology to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can help reduce viral transmission during the ongoing COVID-19 global pandemic and in the future. UV devices emitting UVC irradiation (200 to 280 nm) have proven to be effective for virus disinfection, but limited information is available for SARS-CoV-2 due to the safety requirements of testing, which is limited to biosafety level 3 (BSL3) laboratories. In this study, inactivation of SARS-CoV-2 in thin-film buffered aqueous solution (pH 7.4) was determined across UVC irradiation wavelengths of 222 to 282 nm from krypton chloride (KrCl*) excimers, a low-pressure mercury-vapor lamp, and two UVC light-emitting diodes. Our results show that all tested UVC devices can effectively inactivate SARS-CoV-2, among which the KrCl* excimer had the best disinfection performance (i.e., highest inactivation rate). The inactivation rate constants of SARS-CoV-2 across wavelengths are similar to those for murine hepatitis virus (MHV) from our previous investigation, suggesting that MHV can serve as a reliable surrogate of SARS-CoV-2 with a lower BSL requirement (BSL2) during UV disinfection tests. This study provides fundamental information on UVC's action on SARS-CoV-2 and guidance for achieving reliable disinfection performance with UVC devices. IMPORTANCE UV light is an effective tool to help stem the spread of respiratory viruses and protect public health in commercial, public, transportation, and health care settings. For effective use of UV, there is a need to determine the efficiency of different UV wavelengths in killing pathogens, specifically SARS-CoV-2, to support efforts to control the ongoing COVID-19 global pandemic and future coronavirus-caused respiratory virus pandemics. We found that SARS-CoV-2 can be inactivated effectively using a broad range of UVC wavelengths, and 222 nm provided the best disinfection performance. Interestingly, 222-nm irradiation has been found to be safe for human exposure up to thresholds that are beyond those effective for inactivating viruses. Therefore, applying UV light from KrCl* excimers in public spaces can effectively help reduce viral aerosol or surface-based transmissions.


Subject(s)
Disinfection/methods , SARS-CoV-2/radiation effects , Virus Inactivation/radiation effects , Animals , Bacteriophage phi 6/radiation effects , COVID-19/prevention & control , COVID-19/transmission , Coronavirus 229E, Human/radiation effects , Disinfection/instrumentation , Humans , Mice , Murine hepatitis virus/radiation effects , Ultraviolet Rays
10.
Am J Infect Control ; 49(12): 1569-1571, 2021 12.
Article in English | MEDLINE | ID: covidwho-1401145

ABSTRACT

The COVID-19 pandemic has accelerated the demand for alternatives to standard cleaning and disinfection practices. Antiviral coatingsmay provide an alternative to common surface treatments. A newly developed quaternary ammonium polymer coating was applied to stainless steel coupons and evaluated for efficacy against human coronavirus 229E and SARS-CoV-2. The polymer coating reduced levels of both test viruses by greater than 99.9% relative to non-coated stainless steel coupons during a 2-hour contact time.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Antiviral Agents , Humans , Pandemics , SARS-CoV-2
11.
J Appl Microbiol ; 132(2): 1435-1448, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1383398

ABSTRACT

AIMS: Contaminated laundry can spread infections. However, current directives for safe laundering are limited to healthcare settings and not reflective of domestic conditions. We aimed to use quantitative microbial risk assessment to evaluate household laundering practices (e.g., detergent selection, washing and drying temperatures, and sanitizer use) relative to log10 reductions in pathogens and infection risks during the clothes sorting, washer/dryer loading, folding and storing steps. METHODS AND RESULTS: Using published data, we characterized laundry infection risks for respiratory and enteric pathogens relative to a single user contact scenario and a 1.0 × 10-6 acceptable risk threshold. For respiratory pathogens, risks following cold water wash temperatures (e.g. median 14.4℃) and standard detergents ranged from 2.2 × 10-5 to 2.2 × 10-7 . Use of advanced, enzymatic detergents reduced risks to 8.6 × 10-8 and 2.2 × 10-11 respectively. For enteric pathogens, however, hot water, advanced detergents, sanitizing agents and drying are needed to reach risk targets. SIGNIFICANCE AND IMPACT OF THE STUDY: Conclusions provide guidance for household laundry practices to achieve targeted risk reductions, given a single user contact scenario. A key finding was that hand hygiene implemented at critical control points in the laundering process was the most significant driver of infection prevention, additionally reducing infection risks by up to 6 log10 .


Subject(s)
Laundering , Textiles , Detergents
12.
FEMS Microbes ; 2, 2021.
Article in English | PMC | ID: covidwho-1387875

ABSTRACT

People infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shed the virus and its genetic material via their sputum, nasopharyngeal secretions, saliva, urine and feces (Cevik et al.2021). Hence, public health and water quality scientists throughout the world have been monitoring untreated and/or primary treated wastewater and sludge for the surveillance of SARS-CoV-2 in communities (https://arcg.is/1aummW). Numerous reviews have discussed the possibility of SARS-CoV-2 transmission to humans from exposure to wastewater or waters receiving untreated or inadequately treated wastewater based on limited empirical evidence (Adelodun et al. 2020;Bilal et al. 2020;Olusola-Makinde and Reuben 2020;Elsamadony et al. 2021;Khorram-Manesh, Goniewicz and Burkle 2021;Shutler et al. 2021). Multiple transmission routes have been suggested, including waterborne transmission, airborne transmission, contact with contaminated surfaces (fomites) and subsequent touching of mucous membranes such as the mouth, nose, or eyes. Herein, we briefly summarize the empirical evidence pertaining to the transmission of SARS-CoV-2 associated with wastewater exposure.

13.
Food Environ Virol ; 13(4): 457-469, 2021 12.
Article in English | MEDLINE | ID: covidwho-1366411

ABSTRACT

The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater has been reported as a result of fecal shedding of infected individuals. In this study, the occurrence of SARS-CoV-2 RNA was explored in primary-treated wastewater from two municipal wastewater treatment plants in Quintana Roo, Mexico, along with groundwater from sinkholes, a household well, and submarine groundwater discharges. Physicochemical variables were obtained in situ, and coliphage densities were determined. Three virus concentration methods based on adsorption-elution and sequential filtration were used followed by RNA isolation. Quantification of SARS-CoV-2 was done by RT-qPCR using the CDC 2020 assay, 2019-nCoV_N1 and 2019-nCoV_N2. The Pepper mild mottle virus, one of the most abundant RNA viruses in wastewater was quantified by RT-qPCR and compared to SARS-CoV-2 concentrations. The use of three combined virus concentration methods together with two qPCR assays allowed the detection of SARS-CoV-2 RNA in 58% of the wastewater samples analyzed, whereas none of the groundwater samples were positive for SARS-CoV-2 RNA. Concentrations of SARS-CoV-2 in wastewater were from 1.8 × 103 to 7.5 × 103 genome copies per liter (GC l-1), using the N1 RT-qPCR assay, and from 2.4 × 102 to 5.9 × 103 GC l-1 using the N2 RT-qPCR assay. Based on PMMoV prevalence detected in all wastewater and groundwater samples tested, the three viral concentration methods used could be successfully applied for SARS-CoV-2 RNA detection in further studies. This study represents the first detection of SARS-CoV-2 RNA in wastewater in southeast Mexico and provides a baseline for developing a wastewater-based epidemiology approach in the area.


Subject(s)
COVID-19 , Groundwater , Environmental Monitoring , Humans , Mexico , RNA, Viral/genetics , SARS-CoV-2 , Wastewater
14.
Sci Total Environ ; 801: 149794, 2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1364462

ABSTRACT

Wastewater-based epidemiology (WBE) was utilized to monitor SARS-CoV-2 RNA in sewage collected from manholes specific to individual student dormitories (dorms) at the University of Arizona in the fall semester of 2020, which led to successful identification and reduction of SARS-CoV-2 transmission events. Positive wastewater samples triggered clinical testing of residents within that dorm; thus, SARS-CoV-2 infected individuals were identified regardless of symptom expression. This current study examined clinical testing data to determine the abundance of asymptomatic versus symptomatic cases in these defined communities. Nasal and nasopharyngeal swab samples processed via antigen and PCR tests indicated that 79.2% of SARS-CoV-2 infections were asymptomatic, and only 20.8% of positive cases reported COVID-19 symptoms at the time of testing. Clinical data was paired with corresponding wastewater virus concentrations, which enabled calculation of viral shedding rates in feces per infected person. Mean shedding rates averaged from positive wastewater samples across all dorms were 7.30 ± 0.67 log10 genome copies per gram of feces (gc/g-feces) based on the N1 gene. Quantification of SARS-CoV-2 fecal shedding rates from infected individuals has been the critical missing component necessary for WBE models to measure and predict SARS-CoV-2 infection prevalence in communities. The findings from this study can be utilized to create models that can be used to inform public health prevention and response actions.


Subject(s)
COVID-19 , SARS-CoV-2 , Feces , Humans , RNA, Viral , Wastewater , Wastewater-Based Epidemiological Monitoring
15.
Environmental Science & Technology Letters ; : acs.estlett.1c00178-acs.estlett.1c00178, 2021.
Article in English | PMC | ID: covidwho-1156811
16.
Sci Total Environ ; 779: 146408, 2021 Jul 20.
Article in English | MEDLINE | ID: covidwho-1129189

ABSTRACT

Wastewater-based epidemiology has potential as an early-warning tool for determining the presence of COVID-19 in a community. The University of Arizona (UArizona) utilized WBE paired with clinical testing as a surveillance tool to monitor the UArizona community for SARS-CoV-2 in near real-time, as students re-entered campus in the fall. Positive detection of virus RNA in wastewater lead to selected clinical testing, identification, and isolation of three infected individuals (one symptomatic and two asymptomatic) that averted potential disease transmission. This case study demonstrated the value of WBE as a tool to efficiently utilize resources for COVID-19 prevention and response. Thus, WBE coupled with targeted clinical testing was further conducted on 13 dorms during the course of the Fall semester (Table 3). In total, 91 wastewater samples resulted in positive detection of SARS-CoV-2 RNA that successfully provided an early-warning for at least a single new reported case of infection (positive clinical test) among the residents living in the dorm. Overall, WBE proved to be an accurate diagnostic for new cases of COVID-19 with an 82.0% positive predictive value and an 88.9% negative predictive value. Increases in positive wastewater samples and clinical tests were noted following holiday-related activities. However, shelter-in-place policies proved to be effective in reducing the number of daily reported positive wastewater and clinical tests. This case study provides evidence for WBE paired with clinical testing and public health interventions to effectively contain potential outbreaks of COVID-19 in defined communities.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , RNA, Viral , SARS-CoV-2 , Wastewater
17.
Front Microbiol ; 11: 1351, 2020.
Article in English | MEDLINE | ID: covidwho-853958

ABSTRACT

In December, 2019, a highly infectious and rapidly spreading new pneumonia of unknown cause was reported to the Chinese WHO Country Office. A cluster of these cases had appeared in Wuhan, a city in the Hubei Province of China. These infections were found to be caused by a new coronavirus which was given the name "2019 novel coronavirus" (2019-nCoV). It was later renamed "severe acute respiratory syndrome coronavirus 2," or SARS-CoV-2 by the International Committee on Taxonomy of Viruses on February 11, 2020. It was named SARS-CoV-2 due to its close genetic similarity to the coronavirus which caused the SARS outbreak in 2002 (SARS-CoV-1). The aim of this review is to provide information, primarily to the food industry, regarding a range of biocides effective in eliminating or reducing the presence of coronaviruses from fomites, skin, oral/nasal mucosa, air, and food contact surfaces. As several EPA approved sanitizers against SARS-CoV-2 are commonly used by food processors, these compounds are primarily discussed as much of the industry already has them on site and is familiar with their application and use. Specifically, we focused on the effects of alcohols, povidone iodine, quaternary ammonium compounds, hydrogen peroxide, sodium hypochlorite (NaOCl), peroxyacetic acid (PAA), chlorine dioxide, ozone, ultraviolet light, metals, and plant-based antimicrobials. This review highlights the differences in the resistance or susceptibility of different strains of coronaviruses, or similar viruses, to these antimicrobial agents.

18.
PeerJ ; 8: e9914, 2020.
Article in English | MEDLINE | ID: covidwho-789840

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan City, China, late in December 2019 is an example of an emerging zoonotic virus that threatens public health and international travel and commerce. When such a virus emerges, there is often insufficient specific information available on mechanisms of virus dissemination from animal-to-human or from person-to-person, on the level or route of infection transmissibility or of viral release in body secretions/excretions, and on the survival of virus in aerosols or on surfaces. The effectiveness of available virucidal agents and hygiene practices as interventions for disrupting the spread of infection and the associated diseases may not be clear for the emerging virus. In the present review, we suggest that approaches for infection prevention and control (IPAC) for SARS-CoV-2 and future emerging/re-emerging viruses can be invoked based on pre-existing data on microbicidal and hygiene effectiveness for related and unrelated enveloped viruses.

19.
Am J Infect Control ; 48(9): 1090-1099, 2020 09.
Article in English | MEDLINE | ID: covidwho-738475

ABSTRACT

Antimicrobial resistance (AMR) continues to threaten global health. Although global and national AMR action plans are in place, infection prevention and control is primarily discussed in the context of health care facilities with home and everyday life settings barely addressed. As seen with the recent global SARS-CoV-2 pandemic, everyday hygiene measures can play an important role in containing the threat from infectious microorganisms. This position paper has been developed following a meeting of global experts in London, 2019. It presents evidence that home and community settings are important for infection transmission and also the acquisition and spread of AMR. It also demonstrates that the targeted hygiene approach offers a framework for maximizing protection against colonization and infections, thereby reducing antibiotic prescribing and minimizing selection pressure for the development of antibiotic resistance. If combined with the provision of clean water and sanitation, targeted hygiene can reduce the circulation of resistant bacteria in homes and communities, regardless of a country's Human Development Index (overall social and economic development). Achieving a reduction of AMR strains in health care settings requires a mirrored reduction in the community. The authors call upon national and international policy makers, health agencies, and health care professionals to further recognize the importance of targeted hygiene in the home and everyday life settings for preventing and controlling infection, in a unified quest to tackle AMR.


Subject(s)
Anti-Bacterial Agents/adverse effects , Drug Resistance, Bacterial , Global Health/standards , Hygiene/standards , Prescription Drug Overuse/prevention & control , Bacterial Infections/drug therapy , Humans , Sanitation/standards
20.
Sci Total Environ ; 739: 139076, 2020 Oct 15.
Article in English | MEDLINE | ID: covidwho-154666

ABSTRACT

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a Public Health Emergency of International Concern, which was officially declared by the World Health Organization. SARS-CoV-2 is a member of the family Coronaviridae that consists of a group of enveloped viruses with single-stranded RNA genome, which cause diseases ranging from common colds to acute respiratory distress syndrome. Although the major transmission routes of SARS-CoV-2 are inhalation of aerosol/droplet and person-to-person contact, currently available evidence indicates that the viral RNA is present in wastewater, suggesting the need to better understand wastewater as potential sources of epidemiological data and human health risks. Here, we review the current knowledge related to the potential of wastewater surveillance to understand the epidemiology of COVID-19, methodologies for the detection and quantification of SARS-CoV-2 in wastewater, and information relevant for human health risk assessment of SARS-CoV-2. There has been growing evidence of gastrointestinal symptoms caused by SARS-CoV-2 infections and the presence of viral RNA not only in feces of infected individuals but also in wastewater. One of the major challenges in SARS-CoV-2 detection/quantification in wastewater samples is the lack of an optimized and standardized protocol. Currently available data are also limited for conducting a quantitative microbial risk assessment (QMRA) for SARS-CoV-2 exposure pathways. However, modeling-based approaches have a potential role to play in reducing the impact of the ongoing COVID-19 outbreak. Furthermore, QMRA parameters obtained from previous studies on relevant respiratory viruses help to inform risk assessments of SARS-CoV-2. Our understanding on the potential role of wastewater in SARS-CoV-2 transmission is largely limited by knowledge gaps in its occurrence, persistence, and removal in wastewater. There is an urgent need for further research to establish methodologies for wastewater surveillance and understand the implications of the presence of SARS-CoV-2 in wastewater.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , COVID-19 , Humans , SARS-CoV-2 , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL